辻 雄 (つじ たけし) - 数学者のプロフィール
辻雄氏は、
1967年に生まれた現代日本の数学者で、数理科学の分野で広く知られています。現在、
東京大学大学院数理科学研究科の
教授として、
数論幾何学に特化した研究活動を行っています。特に、彼の専門分野であるp進ホッジ理論は、数論と幾何学の交差点を探求する重要なテーマであり、数学界における重要な知見を提供しています。
略歴
辻氏は麻布高等学校を卒業した後、東京大学大学院に進学し、
1992年に修士課程を修了しました。さらに
1993年には博士課程を修了し、数理科学の博士号を取得しました。その後、
京都大学数理解析研究所で助手として勤務し、
2000年からは東京大学にて助
教授としての職に就きました。
彼は2007年に准
教授に昇進し、2010年に
教授に就任しています。彼の研究は、多くの学術的成果を生み出しており、特にp進ホッジ理論における重要な定理や予想の証明を行っています。これにより、Hodge-Tate予想やde Rham予想、crystalline予想といった他の重要な理論への道を拓いています。
主な業績
辻氏の研究では、特に以下の二つの分野における業績が際立っています。
1.
p進Hodge理論の基礎定理 では、p進 étaleコホモロジーとde Rhamコホモロジー、さらにcrystallineコホモロジーとの間に成り立つ比較定理の証明を行い、この分野の基盤を築きました。
2.
半安定予想の証明では、半安定予想がHodge-Tate予想やde Rham予想、crystalline予想を導くことを示しました。これにより、p進ホッジ理論のさらなる研究が促進されました。
代表的な論文
辻氏の研究成果は多くの学術論文として発表されており、以下は彼の代表的な論文の一部です。
- - Syntomic complexes and p-adic vanishing cycles, J. Reine Angew. Math. 472 (1996)
- - p-adic Hodge theory in the semi-stable reduction case, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)
- - p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999)
- - Poincaré duality for logarithmic crystalline cohomology, Compositio Math. 118 (1999)
- - Semi-stable conjecture of Fontaine-Jannsen: a survey, Astérisque No. 279 (2002)
- - Explicit reciprocity law and formal moduli for Lubin–Tate formal groups, J. Reine Angew. Math. 569 (2004)
これらの論文は、彼の研究の深さと革新性を示しています。
受賞歴
辻雄氏は、その卓越した業績により多数の賞を受賞しています。特に、1998年には
日本数学会建部賞を受賞し、同年の
国際数学者会議(ICM)にて招待講演者としても講演しました。2005年には
日本数学会春季賞、2009年には日本学術振興会賞および
日本学士院学術奨励賞を受賞しました。
関連人物
辻氏は数学者の松本眞氏の同世代であり、高校の先輩でもあります。彼らの間には、同じ分野での研究協力や学術的な交流が行われていることが知られています。
参考文献
辻氏の業績に関する詳細な情報は、加藤和也による「辻雄氏の業績」(数学 57巻 (2005) 401-406)を参照してください。
このように、辻雄氏は日本の数学界において非常に重要な役割を果たし続けており、今後の研究も期待されています。