イータ中間子 (η) とイータプライム中間子 (η')
イータ
中間子(η)およびイータプライム
中間子(η')は、
アップクォーク、ダウン
クォーク、ストレンジ
クォーク、そしてそれらの反
クォークから構成される
中間子です。これらは、素
粒子物理学において重要な役割を果たしており、その特性は様々な理論的研究の対象となっています。
チャーム
クォークやボトム
クォークを含むチャームイータ
中間子(ηc)とボトムイータ
中間子(ηb)は、イータ
中間子と同じスピンとパリティを持つクォーコニウムです。ただし、トップ
クォークは質量が非常に大きく、崩壊が速いため、同様のトップイータ
中間子(ηt)は存在しません。
発見
イータ
中間子は1961年、ベバトロンでの
パイ中間子と
核子の衝突実験中に発見されました。この発見は、素
粒子物理学における新たな
粒子の存在を示唆し、その後の研究を加速させるきっかけとなりました。
η-η' パズル
イータ
中間子とイータプライム
中間子の質量の差は、単純な
クォークモデルの予測よりも大きくなることが知られています。この現象は「η-η' パズル」と呼ばれ、長年にわたり物理学者たちを悩ませてきました。
このパズルの解明には、U(1)A 問題が深く関わっています。U(1)A 問題とは、軸性カレントの保存則が
量子色力学(QCD)においてアノマリーにより破れているという問題です。このアノマリー効果により、イータプライム
中間子の質量が異常に大きくなると考えられています。
Witten–Veneziano 機構
large-Nc極限においては、イータ
中間子とは異なり、イータプライム
中間子は
グルーオンのみの状態を経由するファインマンダイアグラムを描くことができます。この性質を利用することで、質量差を説明することが可能です。この機構は、
エドワード・ウィッテンとガブリエーレ・ヴェネツィアーノによって提唱され、Witten–Veneziano 機構と呼ばれています。
イータ
中間子に関するU(1)A問題が解決されると、
量子色力学の
真空がCP対称性を破る可能性が生じます。これは
強いCP問題として知られており、素
粒子物理学における未解決の重要な問題の一つです。
まとめ
イータ
中間子とその関連現象は、素
粒子物理学における様々な深い問題と結びついています。これらの研究は、
クォーク模型の理解を深め、
量子色力学の性質を解明する上で不可欠です。
参考文献
Eta Meson at the Particle Data Group
関連項目
量子異常
1/N展開
強いCP問題