最近作成された記事

真性半導体

真性半導体とは、不純物を含まない純粋な半導体のことです。熱や光によって電子が励起され、伝導電子と正孔が発生し電気伝導を担います。本記事では、真性半導体のバンド間遷移、キャリア密度、フェルミ準位、温度依存性、ドーピング、キャリア移動度について詳細に解説します。


相対論効果

本記事では、相対性理論における相対論効果、特にバンド計算への応用について解説します。重元素における相対論効果の重要性、半相対論計算と完全相対論計算の違い、そして相対論効果が無視できない元素の例などを、分かりやすく説明します。


直交化

線形空間におけるベクトルの直交化について解説します。グラム・シュミットの正規直交化法、第一原理バンド計算への応用、計算コストに関する課題、そして関連手法であるLöwdinの直交化を詳述。直交化の概念と実際的な計算手法、その計算コストに関する問題点、そして第一原理バンド計算における役割を理解することができます。


特殊点法

ブリュアンゾーン積分における数値計算手法の一つである特殊点法について解説します。Monkhorst-Pack法などの特殊点の選び方や、他の手法であるテトラヘドロン法との比較、第一原理バンド計算との関連性についても詳しく説明します。ブリュアンゾーン積分を効率的に求めるための重要な概念と手法を理解することができます。


熱酸化

シリコンウェハーへの熱酸化処理について解説。高温下での酸素や水蒸気との化学反応による二酸化ケイ素膜形成、Deal-Groveモデル、湿式・乾式酸化、LOCOSプロセス、酸化膜の品質、縦型・横型炉の特徴、結晶方位の影響などを詳細に説明。半導体製造における重要プロセスを網羅。


混合基底

混合基底法は、第一原理バンド計算において、平面波基底と局在基底を組み合わせることで計算効率を高める手法です。擬ポテンシャルが深い原子を含む系では、平面波基底のみでは膨大な計算が必要になりますが、混合基底法を用いることで計算コストを大幅に削減できます。特にガウス型局在基底は解析的な計算を可能にするため有利です。しかし、非直交性による計算の複雑化という課題も存在します。


波数

波数の概念、計算方法、単位、そして物理学、特に分光学や波動力学における役割を詳細に解説した記事です。リュードベリの式や波数ベクトル、フーリエ変換との関係性なども含め、波数の多様な側面に迫ります。


波動関数

量子力学における波動関数の概念、定義、性質、解釈問題について解説します。位置表示や運動量表示、確率振幅、重ね合わせ、時間変化、測定に伴う変化、そして解釈問題(コペンハーゲン解釈、多世界解釈など)といった重要な要素を詳細に説明します。


最急降下法

最急降下法とは、関数の最小値をその傾きのみを用いて探索するアルゴリズムです。単純で高速な反復計算により最小値に近づきますが、局所解に陥りやすいという欠点もあります。本記事では、最急降下法の仕組み、パラメータ調整、局所解問題への対策、そして関連手法について詳しく解説します。


断熱近似

原子核の運動に対して電子の運動が瞬時に追随するという断熱近似について解説します。ボルン-オッペンハイマー近似との違いや、非断熱遷移、関連する概念である断熱ポテンシャル曲面なども説明します。化学反応やカー・パリネロ法における重要性も踏まえ、詳細な数式展開も交えて解説します。


擬ポテンシャル

第一原理計算における擬ポテンシャルについて解説する記事です。擬ポテンシャルの種類、作成方法、問題点、そしてフェルミの擬ポテンシャルまで、詳細な情報を網羅しています。第一原理計算を理解する上で重要な概念を分かりやすく説明します。


平面波

平面波とは、波の等位相面が平面状に広がる波のことです。時間変数を持たない平面波と時間変数を持つ平面波があり、フーリエ変換や波動方程式の解として用いられます。正弦平面波や複素正弦平面波など、様々な種類があり、量子力学や第一原理バンド計算など幅広い分野で活用されています。


平均場近似

平均場近似とは、複雑な多体問題を扱いやすい一体問題に簡略化する近似手法です。多体系の相互作用を平均的な効果として捉え、自己無撞着な方程式を解くことで近似解を求めます。強磁性体のワイス理論や、合金のブラッグ‐ウィリアムス近似、バンド計算の一電子近似など、様々な物理現象の解析に用いられています。ただし、ゆらぎが大きい系には適用できません。


局所密度近似

局所密度近似(LDA)は、密度汎関数理論(DFT)における交換相関エネルギー汎関数の近似手法です。電子密度のみを用いる簡便性から広く用いられていますが、バンドギャップの過小評価など、いくつかの限界も知られています。LDAの原理、適用例、限界、そしてLDAを超える試みについて解説します。


局在基底

局在基底とは、空間のある限られた領域に存在する基底関数のことを指します。特に、原子核周辺に集中する原子軌道を用いたLCAO法は量子化学計算において広く利用されています。本記事では、局在基底の種類、LCAO法、関連する計算手法について詳細に解説します。バンド計算や第一原理計算、量子化学的手法との関連性にも触れ、理解を深めます。


対角化

本記事では、線形代数学における重要な概念である行列の対角化について解説します。対角化とは、正方行列を相似変換によって対角行列に変換する操作で、計算の効率化に役立ちます。固有値、固有ベクトル、固有空間といった関連概念についても説明し、具体的な計算例を用いて対角化の手順を分かりやすく解説します。また、対角化可能な条件についても詳しく述べます。


密度汎関数理論

密度汎関数理論(DFT)とは、電子系の性質を電子密度から計算する量子力学的手法です。原子、分子、凝縮系など多様な系の電子状態を効率的に計算できる汎用性の高い手法として、物理学、化学の分野で広く用いられています。 Hohenberg-Kohnの定理、Kohn-Sham方程式、交換-相関汎関数といった重要な概念を解説し、DFTの適用範囲や課題、近似法の発展にも触れます。


実空間法

実空間法は、物質の電子状態を計算する手法の一つです。従来のバンド計算と異なり、実空間における波動関数を直接計算します。そのため、高速フーリエ変換(FFT)が不要で、並列計算に向いています。また、境界条件の自由度が高く、電場などの外場を簡単に取り扱うことができます。第一原理バンド計算と関連するこの手法は、様々な物質の性質解明に役立っています。


多重散乱理論

多重散乱理論とは、複数の散乱ポテンシャルによる多重散乱を扱う理論です。本記事では、ランダムなポテンシャルを持つ格子系における電子の多重散乱を、グリーン関数と総散乱行列を用いて解説します。さらに、厳密な形式解、状態密度、ランダム系への拡張についても論じます。


変分法

変分法は、関数の集合から実数への写像である汎関数の最大値や最小値を求める解析学の一分野です。最速降下曲線問題に端を発し、オイラーやラグランジュらの貢献を経て発展しました。極値を求めるためのオイラー・ラグランジュ方程式や、極小値の十分条件など、重要な概念を解説します。


増幅回路

電子回路における増幅回路について解説した記事です。増幅回路の種類、諸元、バイアス方式、級、代表的な構成方式、効率改善のための回路構成、帰還、用途、結合方式、付加回路などについて、詳細な情報を提供します。初心者にも分かりやすいよう、図表や具体例を用いて丁寧に解説しています。


基底関数

基底関数とは関数空間の基底ベクトルであり、対象空間の関数を線形結合で表現するものです。線形基底展開は、基底関数の線形結合で関数を表現する手法で、フーリエ変換やウェーブレット変換など様々な場面で使われます。基底関数の内積を用いて正規直交基底を定義し、直交性や正規性を確認できます。


単サイト近似

多重散乱理論における近似手法である単サイト近似について解説。ランダムなポテンシャルを持つ不規則二元合金を例に、平均操作による近似の過程と、状態密度算出への応用について詳細に説明します。CPAや第一原理バンド計算との関連にも触れています。


半導体デバイス製造

半導体デバイス製造は、シリコンウェハー上に複雑な電気回路を形成する精密な工程です。設計から製造、検査まで、高度な技術とクリーンルーム環境が不可欠です。本記事では、ウェハー製造工程における前工程、後工程、検査管理工程について詳細に解説します。


共役勾配法

共役勾配法は、大規模な連立一次方程式を効率的に解く反復解法です。対称正定値行列を係数とする方程式に適用され、最適化問題にも利用されます。本記事では、そのアルゴリズム、前処理、正規方程式への適用、関連手法について詳細に解説します。


不純物半導体

不純物半導体とは、純粋な半導体に不純物を添加することで電気伝導度を制御した半導体の種類です。不純物の種類によってN型とP型の2種類に分類され、それぞれ電子とホールがキャリアとなります。この資料では、不純物半導体の性質、キャリア密度、フェルミ準位について詳細に解説しています。


一電子近似

電子状態計算における一電子近似について解説。多電子系の複雑な相互作用を、平均場近似を用いて一体問題に簡略化することで、電子配置や軌道を求める手法を説明。ハートリー近似、ハートリーフォック近似、多体効果の扱い方、関連事項についても言及。


ホモ接合 (半導体)

ホモ接合とは、同一種類の半導体材料を接合させた構造のことです。p型とn型のホモ接合トランジスタがあり、近年、半導体技術における更なる進歩への期待が高まっています。本記事では、ホモ接合の基礎概念、種類、そして将来展望について詳細に解説します。


ヘテロ接合 (半導体)

異なる半導体の接合であるヘテロ接合について解説します。バンドギャップの違いを利用した応用技術や、結晶成長技術との関連、そして関連用語についても詳しく説明します。太陽電池や半導体レーザーなど、私たちの生活に身近な製品にも活用されている重要な技術です。


ブロッホの定理

ブロッホの定理は、空間的に周期的なポテンシャル下にある粒子の挙動を記述する量子力学の定理です。結晶中の電子のエネルギーバンド構造を理解する上で非常に重要であり、固体物理学の基礎をなす概念です。本記事では、ブロッホの定理の内容、ブロッホ関数、定理の証明、バンド構造との関連性について詳細に解説します。


フルポテンシャル

バンド計算におけるフルポテンシャル法について解説します。球対称ポテンシャルの制限を超え、現実的なポテンシャル形状に対応できる計算手法の高度化について、APW法、LAPW法、LMTO法、KKR法を例に詳細な説明と、フルポテンシャル化による手法の名称変化を紹介します。第一原理バンド計算を理解する上で重要な概念です。


フェルミ面

フェルミ面とは、波数空間におけるエネルギー等値面で、物質の電子状態を理解する上で重要な概念です。金属では明確なフェルミ面が存在する一方、半導体や絶縁体では存在しません。その形状は物質の電子構造を反映し、様々な実験手法で調べることができます。フェルミ速度はフェルミ面上の電子の速度です。


フィラデルフィア半導体指数

フィラデルフィア半導体指数(SOX指数)は、アメリカの半導体産業30社を対象とした株価指数です。NASDAQ OMX PHLXが算出しており、半導体セクターの動向を示す重要な指標として、世界中で利用されています。1993年12月1日基準、時価総額加重平均型で算出され、IT関連産業の景況感を測る先行指標としての役割も担っています。構成銘柄には、アメリカだけでなく、台湾やオランダの企業も含まれています。


バンド理論

固体物理学におけるバンド理論を解説。電子のエネルギー準位が連続的なバンド構造を形成する仕組み、バンドギャップの概念、金属と絶縁体の違い、バンド理論の応用、計算手法、関連研究分野などを詳しく説明します。


バンド図

半導体におけるバンド図とは、空間座標に対する電子エネルギー準位を示す図解です。フェルミ準位やバンド端などの重要なエネルギー準位が、物質内部の位置によってどのように変化するか(バンドベンディング)を視覚的に表現し、半導体デバイスの動作を理解する上で役立ちます。バンド構造図とは異なり、横軸は波数ベクトルではなく空間位置を表します。不確定性原理により、原子レベルの解像度は得られません。


ドーパント

半導体の電気的特性を制御するために用いられるドーパントについて解説します。ドナー、アクセプター、深い準位といったドーパントの種類と、それらが半導体のバンド構造に及ぼす影響について、詳細な説明と図解を交えて分かりやすく解説します。半導体工学における基礎知識を深めるのに役立つ記事です。


テトラヘドロン法

ブリュアンゾーン積分における高精度計算手法であるテトラヘドロン法について解説します。四面体分割による線形補間とBlochl補正を組み合わせることで、従来のk点積分法よりも精度の高い結果を得られる仕組みを詳細に説明します。バンド計算における応用事例や関連手法についても触れ、その重要性を示します。


ダブルヘテロ接合

異なる2種類の半導体材料を用いた3層構造、ダブルヘテロ接合について解説します。2つの接合部を持つこの構造は、単一ヘテロ構造とは異なる特性を示し、半導体デバイスにおいて重要な役割を果たします。材料の組み合わせや層の厚さによって、幅広い特性制御が可能になります。


スラブ近似

スラブ近似は、物質表面などの周期境界条件を満たさない系の性質を計算するための手法です。スーパーセル内に表面層と真空層を配置し、それらが周期的に繰り返す系として扱うことで、表面の性質を近似的に計算します。真空層の厚さや表面の処理方法など、計算精度に影響する様々な要素について解説します。第一原理バンド計算と関連性の高い概念です。


ジェリウムモデル

ジェリウム模型とは、固体中の原子核の正電荷と電子密度が均一に分布すると仮定する固体物理学のモデルです。このモデルを用いることで、結晶構造を無視して電子の量子力学的性質や電子間の相互作用を比較的容易に議論できます。金属の様々な性質を定性的に説明できる簡便なモデルとして知られています。


コヒーレントポテンシャル近似

コヒーレントポテンシャル近似(CPA)とは、不規則な原子配列を持つ合金などの電子状態を計算するための手法です。特に、KKR法と組み合わせたKKR-CPA法が広く用いられており、電子の散乱を考慮することで高い精度を実現します。タイトバインディング法を用いたTB-CPAも存在し、様々な物質の電子状態解明に貢献しています。CPAは、合金の物性解明に不可欠な計算手法として、現代の材料科学研究において重要な役割を果たしています。


カー・パリネロ法

1985年に考案されたカー・パリネロ法は、第一原理分子動力学計算の中核をなす手法です。電子状態と構造最適化を同時に計算することで、従来の手法に比べ飛躍的に計算速度を向上させました。本記事では、その原理、利点、発展、そして計算に必要な要素について詳解します。


オーミック接触

オーミック接触とは、電流電圧特性が線形な電気的接合のこと。半導体デバイスでは、安定で低抵抗なオーミック接触の形成が性能・信頼性に直結します。本記事では、その形成原理、作製、評価、そしてシリコンや化合物半導体への応用について詳述します。


オーダーN法

オーダーN法とは、物質の電子状態を計算する手法の一つで、計算にかかる時間が原子数の1乗に比例するよう工夫された高速な計算方法です。従来の計算方法は原子数の3乗に比例して計算時間が増大するため、巨大な系を扱う際に大きなメリットがあります。密度行列法や局在基底関数法など、様々なアプローチが存在し、ナノ物質や巨大分子の計算に利用されています。


エバルトの方法

エバルト法は、周期境界条件下でクーロン相互作用を効率的に計算する手法です。実空間と逆格子空間の両方で発散するクーロン相互作用を、短距離相互作用と長距離相互作用に分割し、それぞれを効率的に計算することで、計算時間を大幅に削減します。粒子メッシュエバルト法(PME)など、様々な改良法も存在します。


アモルファス半導体

アモルファス半導体とは、結晶構造を持たない非晶質の半導体です。結晶性半導体とは異なる独自の物性を持ち、太陽電池や薄膜トランジスタなど、様々な用途に応用されています。その特性や材料、応用例について詳しく解説します。


Pn接合

pn接合とは、P型半導体とN型半導体が接合した部分で、整流作用や発光、光電効果などの特性を示す半導体構造です。この性質を利用して、ダイオードやトランジスタなどの様々な半導体素子が作られています。接合部には電子や正孔が不足する空乏層という領域が形成され、その幅や電位差は接合特性に大きく影響します。


LAPW法

LAPW法は、物質の電子状態を計算する第一原理バンド計算の手法の一つです。従来のAPW法が抱えていた計算コストの高さや固有値の取りこぼしの問題を解決するために開発されました。エネルギー依存性を線形化することで、効率的な計算を可能にしています。しかし、ゴーストバンド問題といった課題も存在します。本記事では、LAPW法の詳細、その歴史、そして関連する手法について解説します。


KKR法

KKR法は、Korringa、Kohn、Rostokerの3氏によって開発された、物質の電子状態を計算する手法です。グリーン関数と呼ばれる数学的ツールに基づいており、合金などの不規則な系の計算にも有効です。第一原理計算へCPA近似を導入した画期的な手法として知られています。電子散乱理論と密接に関連しており、固体物理学や材料科学の分野で重要な役割を果たしています。


APW法

APW法は、物質の電子状態を計算する手法の一つです。1937年にスレイターによって発明され、マフィンティンポテンシャルを用いたバンド計算を行います。平面波と球面波を組み合わせた基底関数を使用し、様々な改良版が開発されています。固体物理学において重要な役割を果たす計算手法です。


解析力学

解析力学とは、一般座標系で記述される力学体系です。ラグランジアンやハミルトニアンといった座標変換に対して不変な量を用い、変分法や最小作用の原理によって運動方程式を導出します。ニュートン力学とは異なり、一般座標系への変換においても方程式の形が不変という利点があります。


玉虫文一

物理化学者玉蟲文一(1898-1982)の生涯と業績を紹介。東京大学名誉教授として界面化学、レオロジー、科学史の研究に貢献、教育にも尽力した様子を詳細に記述。受賞歴や主要著作、関連資料にも触れ、その人物像を多角的に明らかにする。


玉木英彦

玉木英彦(1909-2013)は、日本の物理学者、科学史家として著名な人物です。東京大学教授などを歴任し、数々の著書や翻訳で日本の科学界に多大な貢献をしました。特に、仁科芳雄博士に関する研究や著作は高く評価されています。本記事では、その生涯と業績を詳細に解説します。


波動力学

シュレーディンガーが提唱した量子力学の定式化、波動力学について解説する記事です。電子の波動性を実験で検証した歴史や、シュレーディンガー方程式、その後の発展、関連事項などを詳しく記述しています。量子力学を理解する上で重要な概念を網羅した、詳細な解説記事です。


森正武

日本の著名な数学者、森正武氏の生涯と業績をまとめた記事です。東京大学、京都大学、筑波大学で教鞭をとり、数値解析、応用数学の分野で多大な貢献をしました。国際数学者会議での招待講演や数々の受賞歴、そして多くの著書を通して、日本の数学界に大きな足跡を残しました。


東京大学大学院数物系研究科

東京大学大学院数物系研究科は、1953年に設立された東京大学大学院の研究科です。理学系と工学系の幅広い分野を網羅し、数学、物理学、天文学から土木工学、電気工学まで、多くの専攻が置かれていました。1965年の改組により、理学系研究科、工学系研究科、農学系研究科へと分割され、その歴史に幕を閉じました。本記事では、数物系研究科の設立から廃止までの歴史、設置されていた専攻、そしてその後の研究科の変遷について詳細に解説します。


木村英紀

木村英紀氏は、制御理論、システム科学、生物制御の第一人者であり、国際的にも高い評価を受ける工学者です。東京大学名誉教授、大阪大学名誉教授を務め、数々の受賞歴と豊富な著作、そして指導者としての経験を持ちます。工学分野における多大な貢献と、その功績は日本の科学技術発展に大きく貢献しました。


新井朝雄

新井朝雄氏(あらい あさお)は、北海道大学大学院理学研究院数学部門教授を務める日本の著名な数学者・数理物理学者です。専門は数理物理学と関数解析学で、荷電粒子と電磁場の系のスペクトル解析における先駆的研究で知られています。国際的な活動にも積極的で、数々の著書や論文を発表し、日本の数理物理学の発展に大きく貢献しています。


小沼通二

小沼通二氏(1931年生まれ)は、日本の物理学者で、素粒子理論を専門とする第一人者です。慶應義塾大学名誉教授、神奈川歯科大学理事などの要職を歴任し、日本物理学会会長やアジア太平洋物理学会連合会長も務めました。ノーベル平和賞受賞者も輩出するパグウォッシュ会議の評議員も経験するなど、国際的にも活躍されています。本記事では、氏の経歴、研究活動、著作、社会貢献活動について詳しく解説します。


小嶋泉

小嶋泉氏(1949年-)は、医師免許を持つ異色の経歴を持つ数学者、数理物理学者です。京都大学医学部卒業後、数理物理学、特にゲージ理論の代数的構造の研究で大きな功績を残しました。九後汰一郎氏とともに仁科記念賞を受賞するなど、輝かしい経歴と数々の著書、編集物が存在します。本記事では、小嶋氏の生涯と業績を詳細に解説します。


基礎物理学選書

裳華房より1968年から2008年にかけて刊行された、大学初年級向け物理学のロングセラーシリーズ『基礎物理学選書』。40年以上にわたり改訂を重ね、多くの学生を支え、物理学教育に貢献しました。力学、電磁気学、量子論など、物理学の主要分野を網羅する全27巻からなる充実した内容が特徴です。


国土社

1929年創業の出版社、株式会社国土社。教育図書や児童図書、雑誌の発行で知られ、日本の出版文化に貢献。数々の名作や全集を世に送り出し、教育現場を支えた歴史を持つが、2015年には会社更生法を申請。その後、日本BS放送の連結子会社となり、新たな展開を歩んでいる。


八杉龍一

八杉龍一(1911-1997)は、日本の生物学史家で、東京工業大学と早稲田大学で教鞭をとった。ルイセンコ論争への関与や、進化論、生物学史に関する多様な著作、翻訳で知られ、毎日出版文化賞、産経児童出版文化賞を受賞。生物学研究を社会に広く伝えることに貢献した学者の生涯をたどる。


伊理正夫

伊理正夫氏(1933-2018)の生涯と業績を紹介する記事。東京大学名誉教授として数理工学、応用数学に多大な貢献を果たした氏の研究、教育活動、受賞歴、そして主要な著書を詳細に解説します。日本の数学・工学の発展に大きく寄与した氏の足跡をたどります。


ルベーグ積分

ルベーグ積分とは、リーマン積分を拡張した積分法であり、より広い範囲の関数に適用できます。測度論に基づき、関数のグラフとx軸の間の面積としてではなく、関数の値の集合の大きさを用いて定義されます。確率論や実解析などの分野で重要な役割を果たしています。


ポール・ディラック

イギリスの理論物理学者ポール・ディラックの生涯と業績を紹介する記事です。量子力学への貢献、特異な人物像、そして彼の残した数々の功績について詳細に解説します。寡黙な天才科学者の知られざる一面にも迫ります。


クォーク

素粒子物理学におけるクォークの性質、種類、役割を解説。ハドロンとの関係、クォークモデルの提唱、そしてクォーク星などの関連事項まで踏み込んだ詳細な記事です。専門用語も丁寧に解説し、初めて学ぶ方にも理解しやすいよう分かりやすく記述しています。


島崎英彦

島崎英彦氏は、日本の鉱床学をリードする地球科学者です。東京大学名誉教授として、スカルン鉱床の成因解明や新鉱物発見に貢献、多くの賞を受賞。国際的な研究活動や啓蒙活動にも精力的に取り組み、その功績は高く評価されています。


定永閃石

岐阜県春日鉱山で発見された希少鉱物、定永閃石。その発見から命名、そして分類体系の変更による名称の変遷までを紐解き、鉱物学における興味深い歴史と、その特徴、産出地などを解説します。黒色から黒茶色の短柱状結晶が特徴的な、定永閃石グループを代表する鉱物です。


鮎貝村

山形県西置賜郡に存在した鮎貝村の歴史を詳細に解説します。明治22年の町村制施行による合併から、昭和29年の白鷹町への編入による消滅までの経緯を、具体的な日付や合併相手村などを交えて分かりやすくまとめました。郷土史研究者や地域住民の方々にとって貴重な情報源となるでしょう。


郷田直輝

郷田直輝氏は、日本の天文学者で、専門は位置天文学です。京都大学で理学博士号を取得後、国立天文台教授や東京大学大学院教授などを歴任。銀河の形成進化や赤外線位置天文観測衛星JASMINE計画などの研究で知られています。数々の論文発表や著書、メディア出演などを通して、天文学研究の第一線で活躍されています。


西宮湯川記念賞

西宮湯川記念賞は、40歳未満の若手理論物理学者を対象に、顕著な研究業績をたたえる賞です。湯川秀樹博士の業績を記念し、西宮市が1986年から毎年授与しています。物性、素粒子、原子核、宇宙の4分野から受賞者が選出され、理論物理学の発展に貢献する研究を奨励しています。


裸の特異点

一般相対性理論における裸の特異点とは何かを解説。事象の地平面を持たない特異点、宇宙検閲官仮説、関連する研究、そしてフィクション作品における裸の特異点の描写について詳細に説明します。


日本の物理学者の一覧

日本の物理学者に関する包括的な解説記事です。19世紀から20世紀後半にかけて活躍した著名な物理学者たちを年代順に紹介し、それぞれの研究内容や業績を分かりやすく解説しています。日本の物理学発展に大きく貢献した科学者たちの功績をたどり、現代物理学への影響も考察します。


方励之

中国の天体物理学者にして民主化運動家、方励之の生涯をたどる。若き日の党への参加から、文化大革命での投獄、天安門事件でのアメリカ大使館への亡命、そしてアリゾナ大学教授としての晩年まで、激動の人生と業績を詳細に解説する。


山形県立長井高等学校

山形県長井市に位置する県立高校、山形県立長井高等学校の詳細情報です。歴史、教育方針、部活動、著名な卒業生などを網羅。置賜地方有数の進学校として知られる、その魅力を紹介します。


冨松彰

冨松彰氏(1947年生まれ)は、日本の宇宙物理学者です。専門は宇宙物理学、宇宙論、重力理論で、広島大学、名古屋大学にて教鞭を執りました。佐藤文隆氏と共に発見したT-S解(トミマツ・サトウ解)は、回転するブラックホールを記述する画期的な理論として知られています。本稿では、その業績や経歴、そしてブラックホール研究の最前線について解説します。


佐々木節

佐々木節氏(1952年生まれ)は、日本の宇宙物理学者であり、カブリ数物連携宇宙研究機構の副機構長兼特任教授を務めています。京都大学基礎物理学研究所所長を歴任した経歴を持ち、一般相対論や宇宙論の第一人者として知られています。数々の受賞歴や研究活動、そして著書を通して、日本の宇宙物理学の発展に大きく貢献しています。


仁科記念賞

仁科記念賞は、原子物理学とその関連分野における優れた研究業績を称える、権威ある賞です。1955年、日本の物理学界の礎を築いた仁科芳雄博士の功績を記念して創設されました。独創性と先進性に富む研究に贈られ、日本の物理学の発展に大きく貢献しています。毎年、選考委員会が厳正な審査を行い、受賞者を決定します。受賞者は、原子物理学の最先端を担う研究者として、国内外で高い評価を受けています。


ソルベー会議

1911年に始まったソルベー会議は、物理学と化学の発展に大きく貢献した国際会議です。特に1927年の第5回会議は、量子力学の解釈をめぐる激論が繰り広げられ、物理学史に大きな足跡を残しました。2023年には、その貴重な記録がUNESCOの『世界の記憶』に登録されました。


サイエンス社

東京都渋谷区に拠点を置くサイエンス社グループは、自然科学、情報科学、人文科学、社会科学、工学など幅広い分野を網羅する専門性の高い学術書を出版する出版社グループです。株式会社サイエンス社、株式会社新世社、株式会社数理工学社の3社で構成され、それぞれが専門分野に特化した出版物を発行することで、学術研究の発展に貢献しています。グループ各社は、東京都渋谷区千駄ヶ谷の同一ビル内にオフィスを構えています。


EUSO計画

超高エネルギー宇宙線の観測を目的としたEUSO計画。国際宇宙ステーションや気球、人工衛星などを用いて、地球大気中での宇宙線反応による蛍光などを観測する。JEM-EUSO、EUSO-TA、EUSO-Balloonなど、様々なミッションやプロトタイプが開発・運用されてきた。現在も、新たなミッションが計画されている。


表面

「表面」の辞書項目です。物体の内部と外部を隔てる境界面、または表側の面を指します。物理学における表面、特に固体と気体、液体と気体などの界面、そして表面特有の性質や表面科学、関連用語について解説します。表面張力や表面エネルギーといった概念にも触れ、多角的な視点から表面について詳細に説明します。


格子欠陥

結晶構造における不規則性である格子欠陥について解説。点欠陥、線欠陥、面欠陥といった種類、それらの生成要因、そして電子顕微鏡やX線回折といった観測手法を詳細に説明。材料科学や物性物理学における重要性を示し、関連研究会についても触れています。


完全結晶

完全結晶とは、不純物や欠陥が一切ない理想的な結晶構造のことです。現実には、完全に欠陥のない結晶は存在せず、原子レベルの欠陥や不純物が存在します。しかし、科学技術の進歩により、欠陥の少ない高品質な結晶を作り出すことが可能になり、半導体製造などに応用されています。この記事では、完全結晶の定義、現実の結晶との違い、そしてその応用について解説します。


周期的境界条件

周期的境界条件(PBC)とは、系の境界を周期的に繰り返すとする境界条件です。結晶構造のような並進対称性を持つ系のシミュレーションにおいて、系の有限性を考慮することなく、無限系を近似する手法として広く用いられています。分子動力学法や第一原理バンド計算など、様々な計算手法で活用されています。


バンド計算

バンド計算とは、物質の電子状態を解明する計算手法の総称です。結晶などの周期系だけでなく、表面系や不規則系などにも適用され、物質の性質を予測する上で重要な役割を果たします。様々な手法が存在し、第一原理計算や経験的計算など、対象や目的に応じて使い分けられます。本記事では、バンド計算の基本原理、代表的な手法、応用例、関連文献などを解説します。


DFPT法

DFPT法は、密度汎関数摂動論に基づく第一原理計算手法で、物質の様々な物性を高精度に予測します。原子核の変位を摂動として扱い、フォノンやマグノンなどの情報を効率的に計算でき、超伝導転移温度の算出、誘電率・弾性定数などの物性値の評価にも用いられます。第一原理バンド計算と連携して、物質の振る舞いを多角的に解明する強力なツールです。


石山寺硅灰石

滋賀県大津市の石山寺にある国の天然記念物、石山寺珪灰石について解説します。聖武天皇の時代から大切にされてきたこの巨岩は、寺院名の由来にもなると言われ、その歴史的、地質学的価値から、多くの研究者や観光客を魅了しています。独特の形状と縞模様を持つその姿は、まさに自然が生み出した芸術作品です。


田野畑石

2012年に発見された日本産新鉱物「田野畑石」。岩手県田野畑鉱山で産出する希少な鉱物で、その美しい結晶構造と独特の化学組成から、鉱物学研究において重要な位置を占めています。本記事では、田野畑石の発見から命名、そしてその特性や分類、関連鉱物との比較など、詳細な情報を分かりやすく解説します。


村上石

愛媛県で発見された新鉱物「村上石」は、リチウムを豊富に含む希少な鉱物です。ペクトライトグループに属し、ナトリウムの代わりにリチウムを含む点が特徴です。山口大学名誉教授の村上允英氏にちなんで命名され、その発見は長年の予測を裏付ける貴重な成果となりました。紫外線照射下では独特の蛍光を示すことも判明しています。


ペクトライト

ペクトライト(ソーダ珪灰石)は、ケイ酸塩鉱物の一種で、透明または半透明の結晶構造を持ちます。マンガンや銅の含有量によって桃色や水色に色づくことがあり、シャトヤンシー効果を示すものもあります。硬度が低く割れやすいものの、装飾品として珍重され、特にドミニカ共和国産のものはラリマーと呼ばれ、高い人気を誇ります。1828年にイタリアで発見された歴史を持ち、世界各地で産出されています。


サニディン

サニディンは、高温で生成するアルカリ長石の一種です。ガラス光沢を持つことから玻璃長石とも呼ばれ、流紋岩や粗面岩などに含まれます。ナトリウムを多く含むものは、アノーソクレースとともに、美しい青色の閃光を見せる月長石となります。


白華

建築物のコンクリートや木材の表面に発生する白い結晶の析出、白華現象について解説します。原因や対策、木材への影響と対策まで詳しく説明。強度への影響や環境問題はないものの、見栄えの問題は発生するため、適切な対策が必要です。


同綴異義語

同綴異義語とは、スペルが同じでも意味が異なる単語のこと。音声や文脈で意味を区別する必要がある。自然言語処理や音声合成の分野で重要な概念であり、英語や日本語など様々な言語に見られる。この解説では、同綴異義語の定義、種類、具体例、そして問題点などを詳しく説明する。


苦灰岩

苦灰岩は、主要構成成分が苦灰石(ドロマイト)である堆積岩の一種です。白雲岩とも呼ばれ、石灰岩と似た性質を持ちますが、カルシウムの一部がマグネシウムに置き換わっている点が異なります。純粋な苦灰石からなるものは少なく、多くの場合、方解石などの他の成分を含んでいます。地質学において重要な岩石であり、その生成過程や性質は様々な研究対象となっています。本記事では、苦灰岩の定義、特徴、生成メカニズム、関連する岩石との比較などを解説します。


メッシニアン

メッシニアン期(724.6万~533.3万年前)は中新世後期の地質時代。特に有名なのは、地中海がほぼ完全に干上がった『メッシニアン塩分危機』である。この危機の原因、過程、影響について、地質学的発見に基づき解説する。


カラ・ボガス・ゴル湾

中央アジア、トルクメニスタンにあるカラボガスゴル湾は、カスピ海と繋がる浅い湾です。かつてはソ連によって海峡が堰き止められ、干上がりましたが、現在は再びカスピ海と繋がり、独自の生態系を形成しています。この湾の塩分濃度や水位変動、そして環境問題について解説します。


近山晶

近山晶氏(1921-2007)は日本の宝石学を牽引した第一人者であり、多くの業績を残した宝石学者です。英国宝石学協会の資格を取得するなど国際的にも活躍し、宝石に関する数々の書籍を執筆・編纂しました。その功績から「日本の宝石学の父」と称されています。


褶曲

地層の褶曲に関する解説記事です。褶曲の定義、種類(向斜、背斜、単斜、活褶曲)、それらが形成されるメカニズム、地形図における判読方法を詳細に説明しています。地質学の初学者から専門家まで幅広く役立つ内容です。


【記事の利用について】

タイトルと記事文章は、記事のあるページにリンクを張っていただければ、無料で利用できます。
※画像は、利用できませんのでご注意ください。

【リンクついて】

リンクフリーです。